

WZTZ530N30-36KOF МОДУЛИ ТИРИСТОРНЫЕ

Особенности

- ◆Высокая энерготермоциклостойкость
- ◆ Увеличение возможностей циркулирующего мощности
- ◆Экономить пространство и вес

Применения

- ◆Электрический привод
- ◆ Разные выпрямители
- ◆Питания пос.т. для ШИМ инвертора

$I_{T(AV)M}$	530A
$V_{DRM/}V_{RRM}$	3000-3600 V
I_{TRMSM}	1500A
I^2t	$2.000.000A^2S$

Электрические свойства

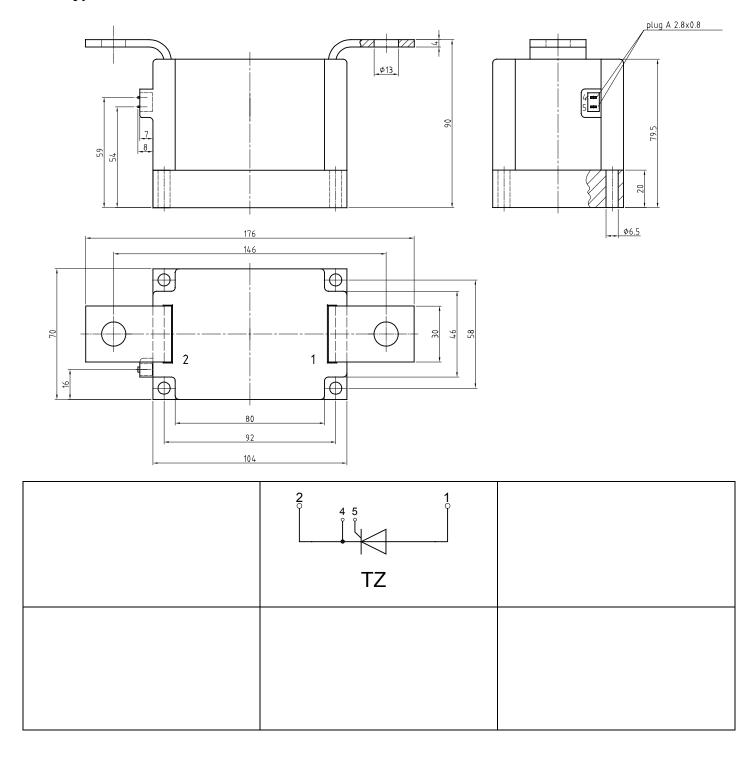
Символы	Наименавание параметра	Условное обозначение	Значения параметров	Единица измерения
V _{DRM} / V _{RRM}	Повторяющееся импульсное напряжение в закрытом состоянии / Повторяющееся импульсное обратное напряжение	$T_{vj} = \text{-}40^{\circ}\text{C} \ T_{vj \ max}$	3000 3200 3400 3600	V
$V_{ m DSM}$	Неповторяющееся импульсное напряжение в закрытом состоянии	$T_{vj} = -40^{\circ}C T_{vj max}$	3000 3200 3400 3600	V
V_{RSM}	Неповторяющееся импульсное обратное напряжение	$T_{vj} = +25^{\circ}\text{C} T_{vj \text{ max}}$	3100 3300 3500 3700	V
I _{TRMSM}	Прямой ограниченный ток Максимальные RMS в открытом состоянии		1500	A
I _{TAVM}	Максимально допустимый средний ток в открытом состоянии	$T_{C} = 85^{\circ}C$ $T_{C} = 66^{\circ}c$	530 955	A A
I_{TSM}	Ударный ток в открытом состоянии	$T_{vj} = 25 {}^{\circ}\text{C}, t_P = 10 \text{ms}$ $T_{vj} = T_{vj \text{max}}, t_P = 10 \text{ms}$	22.000 20.000	A A
I^2t	Защитный показатель	$T_{vj} = 25 {}^{\circ}\text{C}, t_P = 10 \text{ms}$ $T_{vj} = T_{vj \text{max}}, t_P = 10 \text{ms}$	2.420.000 2.000.000	A^2S A^2S
(di _T /dt)cr	Критическая скорость нарастания тока в открытом состоянии	DIN IEC 747-6 $f = 50$ Hz, $i_{GM} = 1$ A, di_G/dt $= 1$ A/ μ s	80	A/μs
(dv _D /dt)cr	Критическая скорость нарастания напряжения в закрытом состоянии	$T_{vj} = T_{vj \; max}, v_D = 0,67$ V_{DRM} 6.Буквенное обозначение / 6^{th} letter C 7.Буквенное обозначение / 6^{th} letter F	500 1000	V/μs V/μs

Характеристические значения

v_{T}	Прямое напряжение в открытом состоянии	$T_{vj} = T_{vj\;max}$, $i_T = 3000\;A$	Макс. 2,65	V
$V_{(TO)}$	Пороговое напряжение	Tvj = Tvj max	1,05	V
r_{T}	Динамическое сопротивление	$T_{vj} = T_{vj \; max}$	0,49	mΩ
I_{GT}	Отпирающий постоянный ток управления	$T_{vj} = 25^{\circ}C, v_D = 6 V$	Макс. 250	mA
V_{GT}	Отпирающее постоянное напряжение управления	$T_{vj} = 25^{\circ}C, v_D = 6 V$	Макс. 2	V
I_{GD}	Неотпирающий постоянний ток управления	$T_v j = T_{vj \text{ max}}$, $v_D = 6 \text{ V}$	Макс. 10	mA
		$T_{vj} = T_{vj \text{ max}}$, $v_D = 0.5 V_{DRM}$	Макс. 5	mA
$V_{ m GD}$	Неотпирающее постоянное напряжение	$T_{vj} = T_{vj \text{ max}}$, $v_D = 0.5 V_{DRM}$	Макс. 0,25	V
	управления			
I_{H}	Удерживающий ток	$T_{vj} = 25^{\circ}C, v_D = 6 \text{ V}, R_A =$	Макс. 500	mA
		5 Ω		
	Ток запирания	$T_v j = 25^{\circ} C, v_D = 6 V, R_{GK}$	Макс. 2500	mA
$I_{\rm L}$		$\geq 10 \Omega$		
		$i_{GM} = 1 A, di_G/dt = 1 A/\mu s,$		
		$t_g = 20 \ \mu s$		
i_D, i_R	Постоянный прямой и обратный ток в закрытом	$T_{v}j = T_{vj \; max}$	Макс. 250	mA
	состоянии	$v_D = V_{DRM}, v_R = v_{RRM}$		
	Выдержка времени управляемого ворота	DIN IEC 747-6		
$t_{ m gd}$		$T_{v}j = 25^{\circ}C, i_{GM} = 1 A,$	Макс. 4	μs
		$di_G/dt = 1 A/\mu s$		

Электрические свойства

$t_{ m q}$	Время выключения	$\begin{split} T_{vj} &= T_{vjmax}, i_{TM} = I_{TAVM} \\ v_{RM} &= 100 \text{ V}, v_{DM} = 0,67 \\ V_{DRM} \\ dv_D/dt &= 20 \text{ V/}\mu s, -di_T/dt \\ &= 10 \text{ A/}\mu s \\ \\ 5. \text{Буквенное обозначение} \\ /5^{th} \text{ letter O} \end{split}$	Тип. 400	μѕ
V_{ISOL}	Испытательное напряжение изоляции	RMS, $f = 50$ Hz, $t = 1$ min	3,0	kV
		RMS, $f = 50$ Hz, $t = 1$ sec	3,6	kV


Термические свойства

	Переходное тепловое сопротивление переход -	pro Modul / per Module,		
R_{thJC}	корпус	$\Theta = 180^{\circ} \sin$	Макс. 0,0450	°C/W
		pro Modul / per Module,	Макс. 0,0435	°C/W
		DC		
R_{thCH}	Тепловое сопротивление переход –охладитель	pro Modul / per Module	Макс. 0,01	°C/W
		pro Zweig / per arm		
$T_{\mathrm{vj\ max}}$	Максимальная температура перехода		125	°C
$T_{c \text{ op}}$	Рабочая температура		-40+125	°C
$T_{ m stg}$	Температура хранения		-40+130	°C

Механические свойства

	Конструкция, смотрите приложение		Страница 3	
	Кремняя сварка с прижимом			
	Внутренняя изоляция		Нитрид	
			алюминия	
M1	Момент монтажа	Допуск ± 15%	6	Nm
M2	Момент терминала подключения	Допуск ± 10%	18	Nm
	Терминалы управления	DIN 46 244	A 2,8 x 0,8	
G	Macca		Тип. 2750	g
	Длина пути утечки		36	mm
	Сопротивление вибрации	f = 50 Hz	50	m/s ²
	UL Сертификация	файл-№.	E 83336	

Конструкция:

Wuhan Wuzheng Rectifier Co., Ltd

Адрес: No. 73, Gaoxin Five Road, East Lake New Technology Development Zone,

Wuhan, Hubei, China (Mainland)

Тел.: 86-27- 87001995 Факс: 86-27- 87180920 Email: info@techele.com Web: cntechele.en.alibaba.com